
Fast, Adaptively Refined Computational
Elements in 3D

Craig C. Douglas1,2, Jonathan Hu3, Jaideep Ray3, Danny Thorne1, and Ray
Tuminaro3

1 University of Kentucky, Department of Computer Science, 325 McVey Hall,
Lexington, KY 40506-0045, USA
{douglas,thorne}@ccs.uky.edu

2 Yale University, Department of Computer Science, P.O. Box 208285
New Haven, CT 06520-8285, USA

douglas-craig@cs.yale.edu
3 Sandia National Laboratory, Livermore, CA 94550, USA

{jhu,jairay,tuminaro}@california.sandia.gov

Abstract. We describe a multilevel adaptive grid refinement package
designed to provide a high performance, serial or parallel patch class for
use in PDE solvers. We provide a high level description algorithmically
with mathematical motivation. The C++ code uses cache aware data
structures and automatically load balances.

1 Introduction

In this paper, we use adaptively refined [2, 3, 15] multilevel [5, 11, 12] procedures
to solve problems of the form {

L(φ) = ρ in Ω,
B(φ) = γ on ∂Ω,

(1)

subject to standard conditions that ensure ellipticity and well posedness [1].
The procedure is derived from the adaptive grid refinement process, not from
the multigrid procedure.

This paper assumes the reader is familiar with how to discretize and solve a
partial differential equation. For remedial information, see [8, 13, 16].

In §2, mathematical formalities are provided. In §3, we define a simple prob-
lem and then use it in later sections to motivate the definitions and methods.
In §4, we define a multilevel adaptive mesh refinement method that is both
complicated and directly implemented in C++ classes. In §5, we provide some
implementation details. In §6, we draw some conclusions.

2 Mathematical Formalities

The basic algorithms are geometrically inspired. Definitions that assume nesting
are defined from a domain (or subdomain), not a grid, perspective. This is ut-
terly common in adaptive grid refinement literature, but is less so in multigrid
literature.



We begin by assuming that Ω is overlaid by a union of tensor product meshes
Λ1,j , j = 1, . . . , n1,

G1 =
n1⋃

j=1

Λ1,j , where G1 ⊂ Ω1 = Ω.

Normally n1 = 1, but the method works fine for n1 > 1. This is referred to as
the level 1, or coarsest, grid and there will be operators defined on it later.

We may have many patches that have been determined through an adaptive
grid refinement process. The set of local grid patches corresponding to ` − 1
refinements (1 < ` ≤ lmax) are denoted

G` =
n⋃̀

j=1

Λ`,j

where the Λ`,j are also tensor product meshes and have been obtained by adap-
tively refining the Λ`−1,j meshes. We define the domains Ω` and Ω`,j as the
minimum domains that include G` and Λ`,j , respectively. Normally, Ω` will be a
union of disconnected subdomains (one subdomain corresponding to each level
` patch).

Note that since our code is really an adaptive grid refinement code with a
multigrid procedure added as an afterthought, lmax can change (increase or
decrease) during the course of solving an actual problem.

We assume there are projection and refinement operators defined, P and R,
respectively. The notation is standard adaptive mesh refinement notation, but is
different from multigrid notation (where the symbols are reversed, sadly). The
operators are used interchangeably with either domains Ω` or grids G`. In terms
of superscripts of domains or grids, P projects from “fine to coarse,” i.e., `→`−1
and R refines from “coarse to fine,” i.e., `→` + 1.

We require strict nesting of grids from a geometric viewpoint:

Glmax⊆Glmax−1⊆ · · ·⊆· · ·G1.

The domain version of this requirement can be written as

R(P (Ω`+1)) ⊆ Ω`+1 and P (Ω`+1) ⊂ Ω`

and

Ω =
lmax⋃
`=1

(Ω` − P (Ω`+1)), where Ωlmax+1 = φ.

Note that interpolation can be used to extend the method to nonnested grids
quite easily, however.

The use of tensor product meshes allows for fairly straightforward finite dif-
ference/finite volume type stencils to define the discrete operator. At internal
patch boundaries, however, some care must be taken. The general idea is to define



ghost points near internal patch boundaries so that locally equispaced unknowns
are available for use with a a regular stencil. In essence, simple B-splines [4] are
used along the boundaries to produce the needed ghost point values. The key
point is that the resulting discretization enforces C1 continuity along the patch
boundaries.

C1 continuity is different than what is normally required in the multigrid
literature (which normally only imposes C0 continuity). For serial computing,
C0 continuity is usually sufficient. However, for problems with severe fronts or
near discontinuities in the solution, C0 continuity is not always sufficient or
desirable.

For parallel multigrid with a local point relaxation smoother, only requiring
C0 continuity requires a special procedure for data that is next to processor im-
posed subdomain boundaries. Otherwise the method is normally globally stable,
but inconsistent. Hence the method does not necessarily converge through failing
the well known numerical analysis theorem stability+consistency=convergence.
C1 continuity imposes a process that guarantees consistency without disturbing
stability. However, it imposes a C1 numerical solution, surprisely, which turns
out not to be much of a constraint for some very difficult problems.

The boundaries of the domains, {∂Ω`}, are required to meet the following
condition:

∂Ω`+1 ∩ ∂Ω` ⊂ ∂Ω

only. This merely ensures that the C1 continuity procedure that we use is well de-
fined and of the right approximation order near patch boundaries in the interior
of Ω [11].

3 A Simple Example

For (1), assume we are solving Poisson’s equation on the unit cube, with a cell
centered finite volume method with uniform mesh spacing h` on a level `. Note
that our code supports variable coefficients as well, however.

Let h` = 21−`h1. Let h = h` and φ = φ` unless otherwise noted, and let
N = 1/h (the number of grid points in each dimension).

In the interior of Ω`, we have the standard seven point stencil:

(∆φ)i,j,k = (φi+1,j,k + φi−1,j,k + φi,j+1,k + φi,j−1,k +
φi,j,k+1 + φi,j,k−1 − 6φi,j,k)h−2.

On the physical boundaries, we must incorporate boundary values that match
flux conditions necessary to ensure a C1 continuity. Assume the φ’s with frac-
tional indices are supplied boundary values. For instance, on the side boundary
in the negative x-direction (i = 0), we have

(∆φ)0,j,k = (
4
3
φ1,j,k +

8
3
φ− 1

2 ,j,k + φi,j+1,k + φi,j−1,k +

φi,j,k+1 + φi,j,k−1 − 8φ0,j,k)h−2.



Fig. 1. 3D Interpolation of Ghost Points, Step 1.

At the corner boundary where (i, j, k) = (0, N, N), we have

(∆φ)0,N,N = (
4
3
φ1,j,k +

8
3
φ− 1

2 ,j,k +
8
3
φi,N+ 1

2 ,k +
4
3
φi,N−1,k +

8
3
φi,j,N+ 1

2
+

4
3
φi,j,N−1 − 12φ0,N,N )h−2.

The rest of the boundary discretizations can be produced similarly.
Near the interface between a coarse grid, Ω`, and a fine grid, Ω`+1, stencils

must be defined on both the coarse and fine grid. The general idea is to use a
flux differencing form of the equations ∆φ` = 5·f `, where f ` = 5φ`:

(∆φ`)i,j,k =
1
h`

(
f `

i+ 1
2 ,j,k − f `

i− 1
2 ,j,k + f `

i,j+ 1
2 ,k − f `

i,j− 1
2 ,k + f `

k+ 1
2 ,j,k − f `

k− 1
2 ,j,k

)
.

Normally, these fluxes are defined as

f `
i+ 1

2 ,j,k = (φ`
i+1,j,k − φ`

i,j,k)h−1
` , and f `

i− 1
2 ,j,k = (φ`

i,j,k − φ`
i−1,j,k)h−1

` ,

and similarly in the y and z directions. However, some of the φ`
i,j,k’s may not be

available. To approximate a flux across a coarse edge that spans several fine grid
edges (of a neighboring patch), each fine grid edge flux is first approximated
using ghost values defined via interpolation or extrapolation. The individual
fine grid fluxes are then summed to obtain the flux across the coarse edge. The
interpolation/extrapolation procedure guarantees C1 continuity near a coarse-
fine interface in the interior of Ω.

As a concrete example, consider Figs. 1 and 2. Only one dimensional, quadratic
interpolation and extrapolation is used. First (Fig. 1), the coarse element cen-
ters, represented by the large us, are used to calculate values at the epoints,
which are used in turn to calculate the values at the � points. Second (Fig. 2),
we use these � points and two existing fine element centers, represented by the
small ss, to get ghost point values at the ⊗ points, which are at the centers of
where fine elements would be.



Fig. 2. 3D Interpolation of Ghost Points, Step 2.

2

1

3

4

Fig. 3. 3D Flux Matching.

These ⊗ points are used to approximate the average of the fluxes across the
four fine grid cell walls at the coarse-fine interface. For instance,

f `
i− 1

2 ,j,k
= 1

4

(
1

h`+1 (δ1 + δ2 + δ3 + δ4)
)
,

where

δ1 = u`+1
⊗1
− u`+1

2(i−1),2j−1,2k−1, δ2 = u`+1
⊗2
− u`+1

2(i−1),2j,2k−1,

δ3 = u`+1
⊗3
− u`+1

2(i−1),2j−1,2k, and δ4 = u`+1
⊗4
− u`+1

2(i−1),2j,2k,

as illustrated in Fig. 3, where the coarse-fine interface is in the negative x-
direction from the coarse grid point at which the operator is being applied.

There can be up to three coarse-fine interfaces at a given coarse cell. In the
case of multiple coarse-fine interfaces, an analogous flux matching procedure is



applied at each interface. A minor difference is that some of the � points must
be extrapolated from the coarse grid data.

More than three coarse-fine interfaces at one coarse cell is a case that is
avoided by the mesh refinement algorithm. More generally, isolated coarse grid
cells, squeezed between fine grid regions, is a case that is avoided by the mesh
refinement algorithm. We must have three adjacent (and colinear) coarse grid
cells, including the one at which the flux matching is being applied, in order
to do the quadratic interpolation of ghost points. When coarse-fine interfaces
abut the physical boundary, boundary values may be used in the interpolation
procedure to compute the � points.

4 Multilevel Adaptive Mesh Refinement

In this section, we define the operators, vectors, and algorithms needed to solve
(1) numerically on a composite grid. Much of the material follows [11].

For solving (1) on level `, we need to store data and information about

G`, φ`, and ρ`.

However, only data and information that cannot be associated with a finer level
` + ε, ε > 0, is stored on level `. Hence, only the part of level ` associated with
Ω` − P (Ω`+1) is stored. Data is stored for grid points only on the finest grid
that that a grid point exists. This is the opposite storage strategy from the one
used for hierarchical basis multigrid implementations [18].

We define two discrete versions of L: one that is defined on Ω` − P (Ω`+1)
and another that is defined assuming that no finer level exists. The difference is
both subtle and confusing. We take great care to motivate the difference between
the two and, in particular, how the patch boundary computations differ.

First, we define L`(φ) on Ω`−P (Ω`+1). In the interior of Ω`, this is the stan-
dard discretization. By the Ω`/Ω`+1 interface, we extrapolate ghost points, then
do the standard discrete operator. We always use either the physical boundary
conditions or the flux matching condition across the boundary.

Second, we define Lnf,`(ε`, ε`−1) on Ω`. This is the standard discretization
on G` without any regard for the existence of finer levels. On G1, we use the
standard discretization across all of Ω. On G`, ` > 1, we only use coarse grid
data to extrapolate ghost point information.

Multigrid methods always have at least one solver (called a smoother or
rougher) and sometimes more than one of each. In the multilevel algorithm that
we will define shortly, we need an operator S`(ε`,R`,h`) on G`.

The operator S` is typically a damped Gauss-Seidel iteration using either
the natural, red-black, or a multi-color ordering. First we compute S` pointwise
on level ` without regard for any other level:

ε`
ijk ← ε`

ijk + λ
[
Lnf,`(ε`, 0)−R`

ijk

]
.

All coarse grid boundary components are set to zero above: ε`−1 = 0, i.e., Dirich-
let type boundary conditions are imposed. The damping factor for a Gauss-Seidel



operator S` can be chosen to be

λinterior =
h2

`

6
and λboundary =

5λinterior

6
.

These damping factors correspond to the recipricol of the discrete operator di-
agonal at the interior and boundary.

We need a method for computing a composite residual on coarser levels. On
the finest level,

Rlmax = ρlmax − Llmax(φ),

where φ is defined over all composite grids. On any level ` < lmax,

R` =

Average(R`+1 − Lnf,`+1(ε`+1, ε`)) in P (Ω`+1)

ρ` − L`(φ) in Ω` − P (Ω`+1)

where Average() is a standard nine point weighted restriction from the finer level
to the coarser level [5].

Lastly, we define a composite grid version of a multigrid µ cycle, where µ
determines how many correction cycles to do from a given level ` > 1.

Algorithm MGCycle(`, µ)
If (` = lmax) then R` ← φ` − Lnf,`(φ`, φ`−1)
If (` = 1) then

solve L1e1 = R1 on G1

Otherwise repeat µ times :
φ`,save ← φ`

e`, e`−1 ← 0
e` ← S`(e`, R`, h`)
φ` ← e`

R`−1 ← Average(R` − Lnf,`(e`, e`−1) on P (Ω`))
MGCycle(`− 1, µ)
e` ← e` + Interpolate(e`−1)
R` ← R` − Lnf,`(e`, e`−1)
ē` ← 0 ē` ← S`(ē`, R`, h`)
e` ← e` + ē`

φ` ← φ`,save + e`

Choosing µ = 1 is the multigrid V cycle. Choosing µ = 2 is the multigrid W
cycle. If we double the number of iterations of the smoother or rougher each
time we move to a coarser grid, we get a variable V or W cycle.

5 Implementation Details

We have implemented a set of C++ classes to solve elliptic PDEs. Our main
usage is in solving nonlinear elliptic and parabolic PDEs for complex problems,
e.g., combustion simulation.



To implement multigrid on adaptively refined meshes, we use two main types
of objects: grids and grid functions. In this section we describe our grids and grid
functions and methods that are defined for each.

The classes store data and operate on it based on the following: discrete
operators, solvers, residuals, and a composite multilevel algorithm. The form
implemented follows the descriptions in §4.

A grid is, first of all, a bounding box. It contains the beginning and ending
coordinates of a brick shaped grid stored as integer coordinates of the beginning
and ending grid points from the discretization. We also store the real coordinates
of the corresponding region from the domain. In addition, a grid includes the
mesh spacing in each direction, the number of grid points in each direction, and
the identity of the processor that it belongs to.

Multiple grids are combined to form a grid level. A grid level is characterized
by its mesh spacing, and the mesh spacings between adjacent levels differ by a
factor, usually two or four, called the refinement factor. Multiple grid levels are
combined to form a grid hierarchy.

Finer grids can be thought of as either nested within or hovering above a
coarser grid. In either case, they can be called child grids of the coarser grid.
Grids maintain pointers to their children and parent. A grid has at most one
parent.

In the beginning, a grid hierarchy usually consists of only one grid level with
only one grid. Through the refinement and load balancing processes this may
develop into an elaborate hierarchy of many grid levels with many grids designed
to efficiently resolve the features of the problem.

Grid functions store the values associated with each grid point on a grid. A
grid function is initialized with a reference to the corresponding grid. The grid
functions of all the grids in the hierarchy are combined into a composite grid
function for which methods are written for applying operations over all the grid
functions of the grid hierarchy as a whole. All the grid functions exist on all
the processors, but they only allocate space for data on the processor that their
corresponding grid belongs to.

We derive these grid functions from an array class that has been highly
optimized for cache performance and robustness. Grid function data can be
accessed using Fortran-like syntax that allows for memory management to be
done at a very low level. This allows us to experiment with different cache
optimizations on different processors easily.

We are exploring a number of storage schemes for optimizing cache effects.
For serial computers, modifying algorithms and data structures for standard
multigrid has been investigated for a variety of problems [7, 9, 10, 17]. For adap-
tively refined grids on parallel processors, there are many more possibilities than
in the serial case. We are implementing many possibilities in order to see which
ones work well on which parallel architectures.

After approximating the solution on the grid hierarchy, there may be points
at which the solution is not sufficiently accurate according to some error ap-
proximation such as Richardson extrapolation [11]. Clustering is the process of



grouping these points into conveniently sized regions. We use clustering rou-
tines based on ones in GrACE (Grid Adaptive Computation Engine) [14], which
is an object-oriented C++ package for managing adaptively refined structured
meshes. It provides an infrastructure for storage of and computation on adap-
tively refined meshes.

Bigger regions are more convenient for doing computations. There is overhead
associated with applying operations to each grid, so minimizing the number of
grids by making the grids bigger means less overhead. Also, more work has to be
done at the interface between a coarse and fine grid, so it is better to use bigger
grids which have a greater proportion of interior nodes.

On the other hand, smaller regions are more convenient for load balancing
and getting an entire patch to fit into cache. It is hard to distribute a few big
grids evenly over many processors. Smaller regions are desirable since they can
more efficiently capture the groups of points that need refinement. Since the
refinement regions are brick shaped and the groups of points needing refinement
are most likely not, it is probable that the refinement region will include points
that do not need refinement. Using smaller grids makes it possible to minimize
the number of points included that do not need refinement.

Refinement is the process of building finer grids over the regions computed
by the clustering process. For each such region, a new grid is created and incor-
porated into the hierarchy. The mesh spacing for the new grid is equal to the
mesh spacing for its parent grid divided by the refinement factor. The new grid
creates a pointer to its parent grid, and the parent grid creates a pointer to its
new child grid.

Load balancing is the process of determining a distribution of the grids over
more than one processor in a way that will balance the amount of work each
processor has to do. We use Zoltan [6] for load balancing.

The load balancing procedure assigns each grid to a processor. The grid
functions must then distribute their data accordingly. They might need to move
their data to a different processor and they might need to interpolate their data
to the grid function of a new grid that was created in the refinement stage. Grid
functions and composite grid functions are equipped with methods for handling
both of these tasks: message passing and interpolation.

The components of the solution procedure are the L operators, the smoother,
and the transfer operators, projection and interpolation. and implement what
was described in §4.

We provide the user with an object that is composed of the grid hierarchy
object and the composite grid function object. The code uses methods for initial-
izing the base grid and grid function(s) and then uses a solve method. We try to
minimize the programming required of the user while guaranteeing robustness.

6 Conclusions

There are a number of strategies for implementing adaptively refined mesh
solvers for elliptic problems in 3D. Besides what type of meshes are chosen,



there are nonobvious caching techniques that must be implemented and eval-
uated in as portable a manner as possible. By portable, a small set of easily
determined parameters must be left to the user to choose, preferably in as au-
tomatic a manner as possible. The library described in this paper is providing a
useful testbed for such an evaluation, besides being useful software.

References

1. Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand Rein-
hold, New York, 1965.

2. Berger, M.J., and Colella, P.: Local adaptive mesh refinement for shock
hydrodynamics. J. Comput. Phys. 82 (1989), 64–84.

3. Berger, M.J., and Oliger, J.: An adaptive mesh refinement for hyperbolic
partial differential equations. J. Comput. Phys. 53 (1984), 484–512.

4. Boor, C.: A Practical Guide to Splines. Springer-Verlag, New York, 1978.
5. Briggs, W.L., Henson, V.E., and McCormick, S.F.: A Multigrid Tutorial.

SIAM Books, Philadelphia, 2000. Second edition.
6. Devine, K., Hendrickson, B., Boman, E., St.John, M., and Vaughan, C.:

Design of dynamic load-balancing tools for parallel applications. In Proc. Interna-
tional Conference on Supercomputing (Santa Fe, 2000).

7. Douglas, C.C.: Caching in with multigrid algorithms: problems in two dimen-
sions. Paral. Alg. Appl. 9 (1996), 195–204.

8. Douglas, C.C., Haase, G., and Langer, U.: A tutorial on elliptic pde’s and
parallel solution methods. http://www.mgnet.org/∼douglas/ccd-preprints.html,
2002.

9. Douglas, C.C., Hu, J., Kowarschik, M., Rüde, U., and Weiss, C.: Cache
optimization for structured and unstructured grid multigrid. Elect. Trans. Numer.
Anal. 10 (2000), 21–40.

10. Hu, J.: Cache Based Multigrid on Unstructured Grids in Two and Three Dimen-
sions. PhD thesis, University of Kentucky, Department of Mathematics, Lexington,
KY, 2000.

11. Martin, D., and Cartwright, K.: Solving Poisson’s equation using adaptive
mesh refinement. http://seesar.lbl.gov/anag/staff/martin/tar/AMR.ps, 1996.

12. McCormick, S.F.: The fast adaptive composite (FAC) method for elliptic equa-
tions. Math. Comp. 46 (1986), 439–456.

13. Morton, K.W., and Mayers, D.F.: Numerical Solution of Partial Differential
Equations. Cambridge University Press, Cambridge, 1994.

14. Parashar, M.: GrACE. http://www.caip.rutgers.edu/∼parashar/TASSL/Projects/
GrACE, 2001.

15. Rüde, U.: Mathematical and Computational Techniques for Multilevel Adaptive
Methods, vol. 13 of Frontiers in Applied Mathematics. SIAM, Philadelphia, 1993.

16. Varga, R.S.: Matrix Iterative Analysis. Prentice–Hall, Englewood Cliffs, NJ,
1962.

17. Weiss et al, C.: Dimepack. http://wwwbode.cs.tum.edu/Par/arch/cache.
18. Yserentant, H.: On the multi–level splitting of finite element spaces. Numer.

Math. 49 (1986), 379–412.


